Clinical Trial

Disease: Relapsed or Refractory B-Cell Malignancies, (NCT03166878)

Disease info:

B-cell malignancies are cancers that arise from abnormalities in B cells, and include B-cell lymphomas and leukaemias. While leukaemias typically originate in the bone marrow and spread through the bloodstream, lymphomas usually originate in the lymph nodes or the spleen and spread through the lymphatic system.

There are more than 70 known types of B-cell lymphoma, and these make up approximately 85 % of all cases of non-Hodgkin lymphomas in the United States. NHL is one of the most common cancers in the United States, accounting for about 4% of all cancers. B-cell lymphomas may grow and spread slowly with few symptoms (also known as indolent lymphoma) or may be very aggressive with severe symptoms. Other common types of B-cell lymphoma include:

  • Diffuse large B-cell lymphoma (DLBCL)
  • Follicular lymphoma
  • Chronic lymphocytic leukaemia (CLL) /small lymphocytic lymphoma (SLL)
  • Mantle cell lymphoma (MCL)
  • Marginal zone lymphomas
  • Burkitt lymphoma

In leukaemia, the bone marrow produces abnormal levels of white blood cells. B-cell acute lymphoblastic leukaemia (B-ALL) is an aggressive leukaemia in which too many B-cell lymphoblasts (immature white blood cells) are found in the bone marrow and blood. B-ALL is the most common type of ALL. Note that B-ALL is also called B-cell acute lymphocytic leukaemia and precursor B-lymphoblastic leukaemia. 

Relapsed refers to when a patient has received active treatment, went off treatment and then the disease came back, whereas refractory refers to disease that is progressing despite active treatment.


NHL accounts for about 4% of all cancers in the U.S. The American Cancer Society estimates 80,550 people will be diagnosed with NHL in 2023. ALL accounts for less than 1% of all cancers in the U.S., with 6,540 new cases estimated in the U.S. in 2023.
Official title:
Phase I/II Study to Determine the Safety, Tolerability, Biological Activity and Efficacy of Universal CRISPR-Cas9 Gene-Editing CAR-T Cells Targeting CD19(UCART019) in Patients With Relapsed or Refractory CD19+ Leukemia and Lymphoma


Name: Dr. Daihong Liu

Phone: 86-10-55499136



Name: Dr. Weidong Han

Phone: 86-10-13651392893



Chinese PLA General Hospital


China, Beijing

Biotherapeutic Department and Hematology Department of Chinese PLA General Hospital, Beijing, Beijing, China, 100853

Study start:
Jun. 1, 2017
80 participants
Gene editing method:
Type of edit:
Gene disruption
T Cell Receptor (TCR) and Beta-2-Microglobulin (B2M)
Delivery method:
Lentivirus (LV) and electroporation - Ex-vivo
Generated gene-disrupted -insertion and knock out- allogeneic CD19-directed BBζ CAR-T cells (termed UCART019) by combining the lentiviral delivery of CAR and CRISPR RNA electroporation to disrupt endogenous TCR and B2M genes simultaneously
IND Enabling Pre-clinical
Phase I Safety
Phase II Safety and Dosing
Phase III Safety and Efficacy

Status: Unknown


Autologous T cells engineered to express chimeric antigen receptors (CARs) against leukemia antigens such as CD19 on B cells have shown promising results for the treatment of relapsed or refractory B-cell malignancies. However, a subset of cancer patients especially heavily pretreated cancer patients could be unable to receive this highly active therapy because of failed expansion. Moreover, it is still a challenge to manufacture an effective therapeutic product for infant cancer patients due to their small blood volume. On the other hand, the inherent characters of autologous CAR-T cell therapy including personalized autologous T cell manufacturing and widely "distributed" approach result in the difficulty of industrialization of autologous CAR-T cell therapy. Universal CD19-specific CAR-T cell(UCART019),derived from one or more healthy unrelated donors but could avoid graft-versus-host-disease (GVHD) and minimize their immunogenicity, is undoubtedly an alternative option to address above-mentioned issues. We have generated gene-disrupted allogeneic CD19-directed BBζ CAR-T cells (termed UCART019) by combining the lentiviral delivery of CAR and CRISPR RNA electroporation to disrupt endogenous TCR and B2M genes simultaneously and will test whether it can evade host-mediated immunity and deliver antileukemic effects without GVHD.

The main goal of the phase 1 portion of this phase 1/2 trial is to evaluate the safety and tolerability of several doses of UCART019 in patients with relapsed or refractory CD19+ leukemia and lymphoma, so as to establish the recommended dose and/or schedule of UCART019 for phase 2 portion. The recommended Phase 2 dose will be defined as the highest dose level of UCART019 that induced DLT in fewer than 33% of patients (i.e., one dose level below that which induced DLT in at least two of six patients). Phase 2 portion of the trial will not be initiated until the recommended Phase 2 dose is determined. In the phase 2 portion of this trial, we will mainly determine if UCART019 help the body's immune system eliminate malignant B-cells. Safety of UCART019 and impact of this treatment on survival will also be observed.

Last updated: Dec. 28, 2023
Search CRISPR Medicine