Status: Active recruiting
Description
The purpose of this study is to assess the efficacy of the combination of PCR and CRISPR/Cas12a in alveolar lavage fluid for early targeted anti-infective therapy for patients with severe pneumonia. Hosted by the Department of Critical Care Medicine, Affiliated Drum Tower Hospital of Nanjing University Medical College, 5 adult ICU units participate in 3 hospitals. All patients are randomly assigned to the experimental group and the control group. For experimental group, the combined detection of PCR and CRISPR/Cas12a in the alveolar lavage fluid was carried out in the early stage, and the antibiotic scheme is changed base on the results of PCR-CRISPR/Cas12a.The patients in the control group were adjusted according to the traditional microbial detection methods. The types of early antibiotics, the proportion of target antibiotics, the duration of anti-infective treatment, the length of hospital stay in ICU, the mortality rate, the secondary antibiotic-associated diarrhea, and the incidence of new multidrug-resistant infections were recorded.
The PCR-CRISPR/Cas12a combination technology of alveolar lavage fluid developed by the College of Life Sciences of Nanjing University is based on PCR amplification and fluorescence signal detection twice to achieve the detection of the presence and absence of specific DNA sequences in the test sample.
The determination of the detection result of the clinical sample pathogen is based on the comparison of the fluorescence results of the PCR product of the sample DNAD with the fluorescence detection results of the positive control (PC) and the negative control (NC) as a standard. The specific recognition function of the CRISPR/Cas12a system relies on the specific guidance and binding of the crRNA to specific DNA, and the specificity of the crRNA is determined by detection of a positive control of a common pathogen by a single crRNA. The detection technology is highly specific and takes only 2-3 hours, which is a qualitative leap in the detection time compared to the conventional technology.
Last updated: Oct. 28, 2021