Disease: Sickle Cell Disease, SCD, (EDIT-301)

Disease info:

Sickle cell disease is a group of disorders that affects haemoglobin, the molecule in red blood cells that delivers oxygen to cells throughout the body. People with this disorder have atypical haemoglobin molecules called haemoglobin S, which can distort red blood cells into a sickle or crescent shape.

The production of haemoglobin A, which is the principle type of haemoglobin in humans, is governed by 3 genes: HBA1, HBA2, and HBB. Each haemoglobin A molecule consists of two alpha and two beta chains, and mutations in either of the HBA or the HBB genes may result in abnormal haemoglobin molecules with reduced or diminshed function. Sickle cell diseaase arises from a single point mutation in the 6th codon of the beta-globin gene (HBB), which results in a valine instead of a glutamic acid in the haemoglobin beta-chain.

Abnormal haemoglobin ultimately leads to anaemia as well as other symptoms, depending on the exact mutations present. Diseases caused by defective haemoglobin fall into a larger category of diseases known as the "haemoglobinopathies" which also include the thalassemias, a related group of diseases that are characterised by reduced or deficient rather than abnormal haemoglobin. 



Sickle cell disease is the most common inherited blood disorder in the United States, affecting 70,000 to 80,000 Americans. The disease is estimated to occur in 1 in 500 African Americans and 1 in 1,000 to 1,400 Hispanic Americans
Official title:















Study start:
Gene editing method:
Type of edit:
Gene enhancement
Haemoglobin Subunit Gamma 1 and 2 (HBG1/2 promoter)
Delivery method:
Electroporation - Ex-vivo
IND Enabling Pre-clinical
Phase I Safety
Phase II Safety and Dosing
Phase III Safety and Efficacy



EDIT-301 is an experimental, autologous cell therapy medicine under investigation for the treatment of sickle cell disease. EDIT-301 is comprised of sickle patient CD34+ cells that are genetically modified using a highly specific and efficient CRISPR/Cas12a (also known as Cpf1) ribonucleoprotein (RNP) to edit the HBG1/2 promoter region in the beta-globin locus. Red blood cells derived from EDIT-301 CD34+ cells demonstrate a sustained increase in foetal haemoglobin (HbF) production, which has the potential to provide a durable treatment benefit for people living with sickle cell disease.

Last updated: Apr. 5, 2021
Source: US National Institutes of Health (NIH)
Search CRISPR Medicine